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Abstract

The paper examines the ‘captured ice shelf’-hypothesis through the construction of a numerical model. Based on ice surface elevation, ice thickness, and ground topography, the velocity is calculated. The thickness is adjusted, taking into account the effects of mass balance and deformation.

By calculating the fluid potential, the location of the water divide in the ice rim around the captured lake is found (the water always flows towards the lower fluid potential). Within the water divide, the ablation is summed up and added to the volume of the captured lake. Thus, the captured ice shelf floats on a water surface which is above the threshold level. Should the water divide cease to exist, the captured lake will be emptied in a jökulhlaup.

The results showed that a quick glacier advance is possible with this mechanism. However, the final equilibrium situation of the model runs do not seem to include any captured ice shelf. This is expected, since the captured ice shelf lacks a stabilizing feed-back mechanism—it is an unstable feature, with a life time probably in the range of a few thousands to several tens of thousands of years.

Introduction

In this paper, the ‘captured ice shelf’-hypothesis is tested in a numerical simulation. The hypothesis is presented in the previous paper in this issue, in which it is also compared with field data from the Weichselian glaciation.

The model presented in this paper calculates the evolution of the ice surface profile in one year steps. The flow of ice into and out of each 1000 m long panel is calculated, and the ablation and accumulation is added, as is the effect of normal strain. The model also calculates the mass balance for subglacial ‘captured’ water.

Both cold-based ice domes and ice shelves are relatively easy to model by themselves. The task becomes more complicated when modelling the border-area between the ice dome and the ice shelf. Still more complex it becomes when trying to model an ice shelf that becomes stranded on the opposite shore, or on a shoal.

In the model, the approach of Paterson (1981) has been followed as regards the calculation of the stresses, although this leads to errors in the intermediate zone between the ice dome and the ice shelf. This interfacing problem has been dealt with by letting the two stresses be a function of the hydrostatic pressure, to produce a smooth overlap.

The flow law

The flow law of ice is used to calculate the internal deformation of the ice (the treatment follows that of Paterson, 1981). Since the ice in the model is assumed to be uniform (and thus implicitly indefinite) in the transverse direction, only two axes are considered, x, positive in the direction of flow, and y, positive upwards. The origin is at sea-level, straight below the ice divide of the ice sheet draining into the ice shelf, and the x-axis is horizontal.

The only non-zero stress components are x, y, z, and xy (cf. Paterson, 1981, pp. 30). With no ice flow in z, only the stress deviators ´ EQ \D\ba4() x and ´ EQ \D\ba4() y are used (the normal stress minus the hydrostatic pressure). With these stress components, the only strain rates that need to be calculated are  EQ \D\ba5() •x and  EQ \D\ba5() •xy (the third,  EQ \D\ba5() •y, equals – EQ \D\ba5() •x, since vertical compression can only be balanced by horizontal extension, and vice versa).
The flow law relates the strain rate to the stress, which can be done by using the effective strain rate  EQ \D\ba5() • and the effective shear stress . In this case, since  EQ \D\ba5() •x equals – EQ \D\ba5() •y,

 EQ \D\ba5() • 2 =  EQ \D\ba5() •x EQ \D\ba3() 2 +  EQ \D\ba5() •xy EQ \D\ba8() 2
[1]

and, since for ´ EQ \D\ba4() z = 0, ´ EQ \D\ba4() x = –´ EQ \D\ba4() y,

2 = ´ EQ \D\ba4() x2 + xy EQ \D\ba8() 2
[2]

Compression and extension is calculated as

 EQ \D\ba5() •x = An–1 ´ EQ \D\ba4() x 
[3]

while shear deformation is calculated as

 EQ \D\ba5() •xy = An–1 xy
[4]

The exponent n is taken to be 3, and A is taken to be 5 10–16 s-1kPa-3, which implies that a uniform temperature of ca. –10°C is assumed (cf. Paterson, 1981, p. 39).

The strain rates are used to calculate the flow velocity, because by definition

 EQ \D\ba5() •x = u/x = –v/y
 EQ \D\ba5() •xy = 1/2(u/y + v/x)
[5]

where u is the velocity component in the x-direction, and v the component along the y-axis.

The normal stress deviator ´ EQ \D\ba4() x is calculated according to Paterson (1981, p. 173), as follows. The average over the ice thickness h, of the weight of the ice (the stress that drives the extending flow), is

y = –i g h2/2
[6]

and the average over the submerged part of the ice, of the weight of the water (the stress counteracting the extending flow), is

x = –w g d2/2
[7]

where g is the gravitational acceleration, h is the thickness of the ice cover, d is the depth of water above the glacier bottom at this location, and i and w is the density of ice and water, respectively. The vertical average of the normal stress deviator can now be calculated:

´ EQ \D\ba4() x = (x–y)/2
[8]

This value can be used directly in an infinitely wide, unanchored, ice shelf, but when anchored the flow is also counteracted by friction underneath (see below). The shear stress is calculated as a function of surface slope:

xy = –i g (h–y) H/x
[9]

where h–y signifies the depth below the ice surface (cf. Paterson, 1981, p. 87).

Boundary conditions

The boundary conditions are that u=0 at x=0, since that is by definition the ice divide; that  EQ \D\ba5() •xy=0 at the ice surface (y=H), since there can be no shear stress at a free surface; that  EQ \D\ba5() •xy=0 if the ice is afloat; that ice and water are incompressible media; and that the basal sliding velocity stays below a certain value (u EQ \D\ba7() b).

This last boundary condition is a simplification, introduced to limit the complexity of the computer model. The limiting basal sliding velocity (u EQ \D\ba7() b) is calculated as a function of the normal force of the ice, and of the available shear stress at the glacier bed. The significance of this boundary condition lies in connecting the inland ice sheet to the ice shelf in a consistent manner, and, more importantly, to set the boundary conditions for the case when the ice shelf runs aground.

The first expression on the right hand side of Eq. 10 relates the basal sliding to the normal stress excerted by the ice on the bed, the assumption being that the maximal velocity is inversely proportional to the friction stress. A thicker ice and a lower hydrostatic pressure thus both decreases the maximal velocity. The term “+1” serves the only purpose to prevent “division by zero”-errors when there is neither ice nor water—for practical purposes it does not affect the calculations.

The second expression adds a low value to account for regelation processes and plastic deformation—it does not affect other than the details of the model results. The exponent 2.5 is chosen as an average between the values suggested for the two processes (e.g. Paterson, 1981, p. 124, Eq. 10). The equation for limiting basal sliding, that was used in the model, is:

u EQ \D\ba7() b 105/(g(hi – dw)+1) + 10–9b EQ \D\ba5() 2.5
[10]

where b is the effective shear stress at the glacier bed. The constants 105 and 10–9 were selected so as to give basal sliding velocities of not more than some tens of metres per year for a few thousand metres thick ice with the water table at the base of the ice. This approach is a simplification, since it sets the maximal velocity to a function of the friction, instead of iterating to the correct velocity in every point as a function of both gravity and friction in the entire ice. However, in this first computer model for testing the captured ice shelf-concept I considered it unjustified (economically…) to adopt such a complex approach.

The basal boundary condition for location x=n can now be expressed as

  ∫ EQ \D\ba15() x=n–x EQ \D\ba18() m EQ \D\ba5() •x x  u EQ \D\ba7() bm – ubn–x
[11]

where u EQ \D\ba7() bm is the limiting basal sliding at x=m, and ubn–x is the calculated (actual) basal sliding at the former element (n–x). In other words, the ice must not accelerate more by extending flow, than that the basal sliding at the limiting point stays below the value given by Eq. 10. The effect of this basal boundary condition is illustrated in Figure 1.

The model

The model calculates the evolution of the ice profile in one year steps, by calculating the volume change in 10,000 m long panels. The flow of ice into, and out of, each panel is calculated, and the height of the ice in the panel is adjusted. It is also adjusted for any vertical compression/extention, and the ablation and accumulation are added. In the panel in which the ice front is, the position of the front is also calculated (though this value was not saved and was thus not used in the animation of the results). Next, the fluid potential is calculated, and a search is made for ice rims. If one is found, all ablation before the ice rim is summed up, and added to a captured lake before the ice rim. The volume of the lake is calculated so that the ice above attains the correct base level. When this is added to the ice thickness, the new ice surface profile results, from which the next iteration can start.

The model was made in FrameWork (on an IBM 80), using the programming language FRED for functions, and using spreadsheets as data objects. The main spreadsheet is shown in the Appendix (situation after 3030 iterations).

The process of calving is neglected, which also is a compromise for the sake of simplicity. Calving will of course affect this ice shelf as all others, but the captured ice shelves in the model run never depended on the thin front, so for the test of the principle this is not believed to be crucial. If the ice shelf started as perennial lake ice (cf. Hughes 1986), then calving would not be expected, but that condition was not modeled in this work.

A most significant parametre to calculate is the normal strain rate,  EQ \D\ba5() •x (and of course also its counterpart  EQ \D\ba5() •y). The question is what happens with the velocity field in the entire ice shelf when it runs aground, and what implications this has on whether an ice rim will form or not.

The normal stress deviator

The question of the calculation of  EQ \D\ba5() •x (rate of extending or compressing flow) is intimately related to the question of how to apply the boundary condition of a limited basal sliding velocity. The basal boundary condition is expressed as a maximal basal sliding velocity in Eq. 10, but it has to be reformulated as a stress component before the strain rates can be calculated. The present author have chosen to regard it as a boundary condition of extending flow; i.e., if there is no basal sliding, there should be no extending flow. It is thus regarded as a x‑component, called Ff, that should be added to ´ EQ \D\ba4() x (the vertical average of the normal stress deviator). The principle that was used to recalculate ´ EQ \D\ba4() x might best be expressed in a graph (Fig. 2). The problem to be solved is of course that the boundary condition is expressed for a different panel than the one in which the calculations take place.

Since the basal boundary condition is not expressed as a force in the present panel, but as a limiting velocity in any panel ahead, an iterative procedure is adopted to adjust´ EQ \D\ba4() x in every element, so that the basal sliding never exceeds the permissible value. This is done by first calculating  EQ \D\ba5() •x in every element along the flow line (10,000 m elements were used), along with the limiting value of u EQ \D\ba7() b (box 1 of Fig. 3). Next, a search is made for the lowest value of u EQ \D\ba7() b ahead (box 2). The difference between the just calculated basal sliding in the previous element, and the limiting value, is calculated (box 3; corresponds to the right hand expression of Eq. 11). The hypothetical acceleration is also calculated (box 4; left hand expression of Eq 11). In the next step, a factor K is calculated as

K = (u EQ \D\ba7() bm – ubn–x)/  EQ \B\bc\((  ∫\D\ba15()x=n–dx\D\ba18()me\D\ba5()•x dx) 
[12]

that is, the relative size of the two arguments in Eq. 11. In other words, K is the ratio between permissible extending flow (permissible as given by the ‘lower boundary condition’ of Eq. 10) and the calculated extending flow in the case of no basal friction.

This factor shall be used to decrease the value of´ EQ \D\ba4() x to a level that gives ubm ≤ u EQ \D\ba7() bm (x=m is the point of the lowest basal sliding ahead). Since  EQ \D\ba5() •x is a function of ´ EQ \D\ba4() xn when xy=0, the friction force is a function of (K)1/n. If, on the other hand, xy is not insignificant in relation to´ EQ \D\ba4() x, then a larger coefficient than 1/n should be used. Thus, a factor R is needed that adjusts for the relation between normal stress and shear stress:

R = n ((2 – ´ EQ \D\ba4() x2) / 2)
[13]

The result was a slightly unstable model, the ice velocity in the inland ice sheet fluctuating in the x-direction by some tens of metres per year around the average value. One may presume that the cause for the fluctuations was that one year was a too long time step; however, more frequent updates was out of the question since each iteration took ca. 30 minutes. So to remove those disturbing fluctuations that otherwise might obscure some results, a dampening factor P´ was introduced:

P´= (Pi–Pw)/Pi
where Pi = hi
and Pw = dw
[14]

P´ is thus the proportion of the ice’s weight at the bed that is not supported by the hydrostatic pressure. The inclusion of P´ has no effect in the ice shelf, but slightly decreases the resulting extending flow on land, by increasing the value of the friction force in the computations. Since the extending flow is almost absent in an inland ice sheet anyway, the inclusion of P´ is not expected to significantly change the model result.

This leads to the following expression of the friction force:

Ff =´ EQ \D\ba4() x K1/(n – R + P´) –´ EQ \D\ba4() x 
[15]

where´ EQ \D\ba4() x, the average normal stress deviator over the interval, calculated as

 EQ \D\ba5() ´ EQ \D\ba4() x =  EQ \B\bc\(( ∫\D\ba10()x=n\D\ba10()ms´\D\ba4()x dx)  /(m–n)
[16]

(Equation 16 corresponds to box 6, and Eq. 15 to box 7 of Fig. 3).

The final step in the application of the basal boundary condition is the addition of the friction force to the normal stress (as in box 8):

´ EQ \D\ba4() x corr = ´ EQ \D\ba4() x + Ff
[17]

When using this method, the boundary conditions illustrated in Figure 1a and 1b will be satisfied.

The shear stress

Not only the normal stress, but also the shear stress must be adjusted when passing from an inland ice sheet to an ice shelf. The shear stress xy is calculated as a function of the ice surface slope, and it is used to calculate the flow of ice on land (cf. Paterson, 1981, pp.83). In the ice shelf there is no friction at the bed, and so there should be no shear even if the surface does slope. In the present model, the shear stress is adjusted for the hydrostatic pressure by using P´ (which varies between P´ = 0 in the ice shelf, and P´ = 1 when there is no water pressure at the base of the inland ice sheet):

xycorr = xy P´
[18]

Strain rates

The adjusted xycorr is used, along with ´ EQ \D\ba4() x corr, to calculate ,  EQ \D\ba5() •x,  EQ \D\ba5() •xy, and u/y at 20 different evenly spaced y-levels. Vertical velocity components are neglected (v/x=0), and  EQ \D\ba7() uy is calculated as the vertical average of u/y (which is zero at the ice surface). The vertical average of  EQ \D\ba5() •x is used along with  EQ \D\ba7() uy to calculate U, the velocity component in the x-direction, which is used in the mass balance calculations in the model. The flow of ice into each panel is calculated as the velocity times thickness in the previous panel, and the outflow as velocity times thickness in the present panel.

Calculating the mass balance of water

In order to provide for the condition of a sub-glacial lake (Björnsson, 1988) or a captured lake, i.e., the water body under a captured ice shelf, it is necessary to find out whether or not there is a seal ahead of the present position. As suggested by Björnsson (1988, p. 20), the fluid potential is calculated as

b = (w – i) g (B–W) + i g (H–W)
[19]

where B is the elevation of the glacier bottom, and W is the elevation of the reference level, in this case the sea level (y=0). H is, as before, the ice surface elevation. The value of b will be constant in the sub-glacial lake, but have a higher value in the ice above it and beside it.

In the model, the existence of a sub-glacial lake is checked for after each iteration. It is defined as having a local minimum in the b-value. The x-coordinate of the water divide is the element after the minimum where the b-value has a maximum. The definition implicitly assumes that the ground under the stranded ice shelf is completely impermeable. 

The model can handle four successive captured lakes. If one of the seals breaks, the water will emerge in a jökulhlaup. The jökulhlaup water from one captured lake is added to the next one, if present. The conditions for the onset and termination of a jökulhlaup was examined by Björnsson (1988, pp. 26). According to his calculations, the sub-glacial lake is not completely emptied in a jökulhlaup, but in this model, the simplification is made that the floating level falls to zero after each jökulhlaup.

Model run

The topography in the model run is illustrated graphically in Figure 4a, and is listed in the Appendix, column “G”. Note the presence of a -129 m shoal in mid-sea, and that the opposite shore only reaches ±0 m, after which the land slopes down again. Thus, the model is along a line that passes the lowest threshold of the basin. The model was run in one-year intervals, and profiles were stored corresponding to 25 year intervals. The initial ice profile is the one at year “0”.

The accumulation decreased from 1.2 to 0.6 m/year the first 290 km, and then it was constant at 0.6 m/year. The ablation amounted to zero the first 290 km, and then increased with 0.005 m per km during the first 2500 iterations, and by 0.0025 m per km during the remaining 525 iterations. In other words, the first part had an equilibrium line at x = 410 km (mid sea), and the second part at x = 770 km (opposit shore). The two parts are treated separately below.

Based on the model results an animation was made (on Macintosh) in which every 25 years is represented by one frame. This visualization proved to be valuable when examining the model results. Figure 4 shows some selected frames from the animation.

General comments

As predicted by the hypothesis, an ice rim did form as the ice shelf hit the opposite shore. It formed by the ice being pushed upslope faster than it could melt, generally under extending flow—although the rate of deformation decreased once the ice got in contact with the ground. The ice rim also acted as a hydrostatic seal, more or less effectively. After a jökulhlaup the ice on the upslope, beyond the lake, could start to slide backwards. In those cases the compressing flow helped create a new ice rim rather quickly.

The model was first run with an equilibrium line in the middle of the model, and then continued with the equilibrium line close to the threshold. The results of these two parts are discussed separately.

Equilibrium line in mid-sea

A captured ice shelf formed in the first deep basin after slightly more than 500 years. The ice shelf was lifted on the captured lake. The lifted ice shelf attains a higher potential energy, which is synonomous with a higher value of y. At the same time x is unchanged, since that is related to the water level beyond the ice shelf. The increased potential energy consequently increased the extension rate. The acceleration due to the first captured lake was rather moderate, though (cf. Fig. 4a, year 700). Frequently jökulhlaups emptied the captured lake, and the floating level (the level that the water would rise to if a hole was drilled through the ice shelf) never rose to more than a few metres above the sea level.

The ice shelf advanced to the second up-slope, and a new captured ice shelf formed. This captured lake was more persistive, and as the ice shelf continued to advance, the base of the ice shelf eventually was elevated so high that the two captured lakes merged, at which time a significant acceleration occured. The position of the ice margin reached and passed the ±0 m threshold before the jökulhlaup occurred (Fig. 4a, year 1125). The floating level reached 10 to 20 metres above the sea level.

After this jökulhlaup, the ice shelf stagnated completely for quite some time. A large part of the front vanished due to ablation. After several hundred iterations, the ice shelf had become thick enough to form a new captured lake in the first basin, before the shoal. Yet some hundred iterations later, with a multitude of small jökulhlaups, the second captured ice shelf formed. It did not accelerate like the first time—the ice rim was low, and frequent jökulhlaups prevented the two captured lakes from joining. The ice shelf did not reach the opposit shore, since the ablation melted all the ice at some distance from the shore (cf. Fig. 4b, years 1500 to 2500). After 2500 iterations the deepest part of the first basin was almost covered by grounded ice.

Note that whatever happened with the ice shelf, the grounded portion of the ice (i.e., before the floating line) never ceased to advance at a slow and rather constant pace. It is likely that the ultimate situation if the model would have been allowed to develop for yet another 10,000 years or so, would have been an ice dome without any ice shelf, or with an insignificant ice shelf.

Equilibrium line on opposite shore

Up to this point, the equilibrium line was in the middle of the lake. In the continuation, the equilibrium line was moved to the opposite shore (be halfing the ablation rate throughout the model). The effect was that the ice immediately and rapidly started to advance (Fig. 4c).

The growing thickness of the ice shelf made an effective ice rim possible. Thus the level of the captured lake grew high enough that a rapid advance could commence. The ice rim was situated before the threshold, and gradually moved backwards towards deeper bottoms. At the termination of the model run it was at ca -60 m. Between this ice rim and the threshold, another ice rim was formed in the model. The concave front of the ice shelf in Figure 4c is the grounded portion beyond the second ice rim.

Note that the two ice rims just referred to were not continuous in time, but were interrupted by frequent jökulhlaups. They were, however, re-established at the same locations after each jökulhalup. The water body captured between the two was very shallow, and was emptied about every second iteration. It should probably be perceived rather as a transition zone of fluctuating englacial water pressure, than as a captured ice shelf.

Once the ice rim position has been established, the future development is for the ice shelf to grow in thickness, and for the floating level to attain higher values before each jökulhlaup. Since the ice shelf is so thick, the water volumes do not grow increasingly large, though.

The front of the ice dome continued its advance, but the gradient decreased. Also, the height in the central portion of the ice dome suddenly started to increase, although that part is situated to the left of where any change in the ablation rate was introduced. Consequently, the change is attributable to a lowered flow velocity in the more gently sloping ice dome front. That, in turn, is caused by a lower flow velocity in the ice shelf, which is due to the fact that it is firmly captured and well on ground.

Should the model run have been continued for another 10,000 iterations under the same conditions, then the evolution this far points towards a continuing growth in height throughout the profile. It is likely that the intermittent jökulhlaups will continue at least until the ice dome has passed the second deep. For further details about the calculated stresses, strain rates, etc., refer to the Appendix for the situation after iteration 3030.

Conclusion

According to the model, a captured ice shelf may form and advance rapidly under the circumstances given. The equilibrium position of the ice dome’s front is of course governed by the mass balance, but before that equilibrium has been attained, the captured ice shelf is, according to the model run, able to advance to well beyond that position. The model was not run long enough to see what the equilibrium condition would be, but the results so far points in the direction that the rapid and far-reaching advance is an initial feature. 

The model gave no “downdraw” of the ice dome, the rapid advance being caused entirely by the thinning of the ice shelf itself. The driving force of the rapid advance is the increased potential energy of the ice in the ice shelf, as it is lifted on the water captured under it.

The ice rim may form quite some distance before the threshold. This means that the jökulhlaups might erode valleys that originate far inside the threshold location. The model also predicted jökulhlaups from one captured lake to another, which can be expected to erode valleys between the basins.
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Fig. 1. a and b shows two extreme cases, with infinite possibility of spreading, and with no possibility of net spreading, respectively. Note that in b there can still be compression and extension, but they must balance one another. c is the real world condition with an anchored or stranded ice shelf.

Fig. 2. The principle by which to calculate´ EQ \D\ba4() x corr (the corrected normal stress deviator) from the value of ´ EQ \D\ba4() x (the original normal stress deviator),  EQ \D\ba5() ´ EQ \D\ba4() x (the average of ´ EQ \D\ba4() x), and u EQ \D\ba7() b (the limiting basal sliding velocity ahead). The value of the reduction factor is 0.1, which means that  EQ \D\ba5() ´ EQ \D\ba4() x has to be reduced by 90%. Note that even though a reduction of ´ EQ \D\ba4() x by multiplication with 0.1 satisfies the boundary condition, the spatial distribution of the strain will be erroneous. Equations 12 through 17 serve the purpose of calculating K, expressing the basal boundary condition as a shear stress component, and adjusting the normal stress deviator as shown in this figure. The solution of the stress and strain equations has to be made twice in every iteration, first using´ EQ \D\ba4() x in all panels, then using ´ EQ \D\ba4() x corr.

Fig. 3. Box 1 and 9 are the usual steps required, whereas 2 to 8 are the additional calculation needed to account for the basal boundary condition of a maximal sliding velocity, as illustrated in Figs. 1 and 2.

Fig. 4. The ice profile according to the model calculations at 7 different times—the figures gives the time in years since the start of the model. The ablation in the first 2500 years (iterations) was twice as high as in the last 500 years. For vertical scale, the deepest trench is 250 m deep, and the ice divide at the year 3000 has an elevation of ca 2500 m a.s.l. The ground is hatched, water has a dark lattice, and the ice has been given three different lighter lattices.
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Appendix

The table below is a printout from the model’s main spreadsheet after 3030 iterations. The column headings have the following meaning:

x = distance from origin (m)

H = ice surface elevation (m)

B = ice base elevation (m)

G = ground elevation (m)

W = floating level (m)

h = ice thickness (m)

u(m/a) = mean velocity in the x direction in metres per year

ub< = u EQ \D\ba7() b = lower boundary condition of Eq. [10] (m/year)

ubkorr = calculated basal sliding velocity=the vertical average of  EQ \D\ba5() •x using ´ EQ \D\ba4() xcorr and xycorr
û =  EQ \D\ba7() uy = the vertical average of the velocity in the x direction caused by internal shear (m/s)

Çx’ = ´ EQ \D\ba4() x = normal stress deviator in the x direction

Ex =  EQ \D\ba5() •x = uncorrected vertical average of the strain rate in the x direction

IntegEx =  ∫ EQ \D\ba12() x=0 EQ \D\ba7() n EQ \D\ba5() •x x = the integral of all Ex-values down to the present one

Çx’korr = ´ EQ \D\ba4() xcorr = Çx’-value corrected for basal boundary condition

Exkorr =  EQ \D\ba5() •xcorr = Ex-value corrected for basal boundary condition

hny = new ice thickness (note that column h already has been updated with these values)

Abl = ablation rate (m/year)

dP = P´ = the proportion of the ice’s weight that is supported by the ground as opposed to by the hydrostatic pressure (cf. Eq. 14)

Andel = the proportion of the panel in the x-direction that is covered by ice

Tid.ande = “Andel” after the former iteration (it has already been updated in the print-out)

Trprt = the transport of ice into the panel which is used to increase “Andel”

Ttotal =  = the effective shear stress calculated from xy at the ice base and ´ EQ \D\ba4() x
Phi = b = the value of the -function at the ice base (cf. Eq. 19)

Ack = accumulation rate (m/year)

dV = the change of elevation of the ice base if the ice was afloat (the value, in metres, is used when calculating the new floating level, W)

The last row below the line shows the number of captured lakes found, and the average ablation and ackumulation rates, respectively.

Remarks: As can be seen, the first ‘captured ice shelf’ has a lower value of W than the second one. There was no procedure to prevent this from happening, and when it did, the model run was discontinued. Furthermore, on the rows x=880000 and 890000 the ice thickness is 0, but still the panels are 100% and 73% ice covered, respectively. The explanation is that the calculated ice thickness is between 0 and 0.5 m (slowly melting) and that there is no algorithm for dealing specifically with those thin ice-situations (in reality there would be an ice cliff at some previous location). In the end of the model run with high floating levels (W), an unrealistic situation occurred sometimes, when the hydrostatic pressure was taken to be lower in the ice dome than in the captured lake (cf. x-values 400000 and 410000). This has the effect of decreasing the predicted flow velocities in the front of the ice dome, and thus it counteracts the process of forming captured ice shelves. Since it did not affect the purpose of the model (–to test the validity of the hypothesis), the problem was not fixed.
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